import io
import json
import math
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorboard.plugins import projector
from portfolio_search.fileorg import *
e2e
Fill in a module description here
Embedding Projector
singleline_data_home()
Path('/Users/al/singleline_data')
Loading TSV’s and Centroids
= singleline_data_home() / "raster/epoch-20231214/"
raster_epoch_dir = (
subclusters_dir / "04_SUBCLUSTERS"
raster_epoch_dir )
= f"{subclusters_dir}/centroids_drawings.json"
drawing_centroids_fname with open(drawing_centroids_fname, "r") as infile:
= json.load(infile) drawing_centroids
= f"{subclusters_dir}/centroids_watercolors.json"
watercolor_centroids_fname with open(watercolor_centroids_fname, "r") as infile:
= json.load(infile) watercolor_centroids
= f"{subclusters_dir}/clustered_drawings.tsv"
clustered_drawings_tsv_fname # drawings_df.to_csv(
# clustered_drawings_tsv_fname, index=True, index_label="idx", sep="\t", header=True
# )
= pd.read_csv(
clustered_drawings_df ="\t", index_col="idx"
clustered_drawings_tsv_fname, delimiter
) clustered_drawings_df.head()
abs_fname | rel_fname | label | pred_label | pred_idx | pred_probs | emb_csv | cluster | cluster_dist | metacluster | ... | drawings_cluster48_id | drawings_cluster48_dist | drawings_cropped_cluster16_id | drawings_cropped_cluster16_dist | drawings_cropped_cluster32_id | drawings_cropped_cluster32_dist | drawings_cropped_cluster48_id | drawings_cropped_cluster48_dist | drawings_cropped_cluster64_id | drawings_cropped_cluster64_dist | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
idx | |||||||||||||||||||||
0 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb77p043.jpg | art/sb77p043.jpg | art | xtra | 4 | 0.168532,0.008473,0.008068,0.016940,0.797986 | -0.6198182,-0.5714155,-0.6871516,-0.6553513,-0.6254566,-0.65341413,-0.7267234,-0.4896673,-0.7537334,-0.42715576,1.4904574,-0.72562873,-0.662768,-0.6266761,0.6913696,0.054546177,-0.5467274,-0.6520286,0.117179275,0.94330966,0.5815062,-0.55193967,-0.5446661,-0.6779002,-0.57759243,-0.4584825,-0.3818994,-0.5750927,-0.73986673,-0.45211998,-0.6141643,-0.67007643,-0.52171326,-0.4592305,1.4788612,-0.6186755,0.799198,-0.57338566,-0.17778617,0.10336053,0.093812525,0.17924881,-0.6189488,-0.6682474,2.1040225,-0.59257406,1.6553459,-0.6001429,0.5109105,0.19352531,-0.2517513,-0.66552746,-0.6482407,-0.4732... | 11 | 199.22961 | 1 | ... | 15 | 166.33705 | 15 | 265.844100 | 15 | 257.350560 | 15 | 268.67297 | 58 | 276.82034 |
1 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb67p021.jpg | art/sb67p021.jpg | art | xtra | 4 | 0.170976,0.008673,0.008480,0.017028,0.794843 | 1.1073987,0.3512016,-0.73929733,-0.6553513,1.7477593,-0.65341413,0.32179314,-0.4896673,-0.1797334,-0.42715576,1.3163843,-0.72562873,-0.61387855,-0.6266761,-0.35361218,0.37611246,-0.08771938,-0.5262803,0.9261699,-0.6497359,-0.64108604,-0.55193967,-0.5446661,-0.6779002,-0.32559583,-0.6690378,-0.4518578,0.51828945,-0.4238917,-0.45211998,-0.16527033,-0.67007643,1.0136865,-0.4592305,-0.600525,-0.060860336,-0.19446748,-0.24127388,2.2282472,1.8003348,-0.61049384,0.39795423,0.2626753,-0.6682474,-0.75794554,-0.59257406,0.80257696,-0.6001429,-0.651804,-0.028328001,0.53641737,-0.6501347,-0.6482407,0.... | 3 | 132.26111 | 0 | ... | 45 | 137.20117 | 14 | 121.146545 | 31 | 122.172424 | 31 | 116.40921 | 34 | 122.04242 |
2 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb25p227.jpg | art/sb25p227.jpg | art | xtra | 4 | 0.158396,0.008277,0.007424,0.016584,0.809319 | 1.3776337,-0.5714155,-0.2587232,-0.6553513,1.3532461,-0.65341413,-0.7267234,-0.4896673,-0.7537334,-0.25077122,0.050992966,-0.72562873,0.1406585,-0.6266761,1.0653365,0.96198404,-0.5467274,0.30261123,0.6327609,-0.6497359,-0.64108604,-0.28434965,-0.35651857,-0.6779002,-0.28245115,-0.6690378,-0.4518578,0.030088186,-0.73986673,-0.18931103,-0.041653574,-0.67007643,-0.52171326,-0.29881266,-0.600525,-0.23231092,-0.73933,-0.57338566,-0.65925777,1.8833572,-0.61049384,0.44560486,0.14075392,-0.6682474,-0.75794554,-0.59257406,-0.07511848,-0.6001429,-0.651804,-0.5315948,0.023931146,0.723624,-0.6482407,-... | 8 | 188.58075 | 0 | ... | 8 | 148.63470 | 10 | 220.298950 | 1 | 217.335360 | 1 | 213.25168 | 1 | 191.67163 |
3 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb48p057.jpg | art/sb48p057.jpg | art | xtra | 4 | 0.165322,0.008453,0.008010,0.016587,0.801628 | 2.4936543,0.17563903,-0.6522293,-0.55642915,1.1084181,-0.5028205,-0.046447277,-0.4896673,-0.7537334,-0.42715576,0.84124434,-0.72562873,-0.52445275,-0.5557985,-0.21369287,2.2372599,-0.26381853,-0.6520286,-0.6898426,-0.6497359,-0.64108604,0.43080842,-0.23286673,-0.6779002,0.7969176,-0.6690378,-0.4518578,0.747658,0.04896885,-0.45211998,-0.68509877,-0.2462106,0.7319356,-0.4592305,-0.600525,-0.6186755,-0.5338096,-0.57338566,1.1886733,0.04046011,-0.61049384,0.45326668,0.72983754,-0.6682474,-0.10000485,0.034278154,-0.33160114,-0.6001429,-0.651804,-0.5315948,-0.20898154,-0.66552746,1.2346795,-0.47... | 14 | 90.26291 | 0 | ... | 28 | 83.96362 | 2 | 144.254030 | 21 | 129.951970 | 21 | 140.07254 | 21 | 144.77570 |
4 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb77p044.jpg | art/sb77p044.jpg | art | xtra | 4 | 0.171638,0.008182,0.008061,0.016469,0.795650 | 2.170152,-0.01916939,-0.47766963,-0.6553513,-0.44795185,-0.65341413,1.5596724,-0.4896673,-0.7537334,-0.42715576,1.0671424,-0.72562873,1.8207353,-0.6266761,-0.6194963,1.1724913,-0.5467274,0.12343103,1.5514618,-0.6497359,0.23890108,-0.55193967,-0.5446661,-0.6779002,-0.57759243,0.33040416,-0.4518578,0.39869583,0.120936334,-0.45211998,-0.68509877,0.2514736,0.17836922,-0.4592305,-0.600525,-0.6186755,-0.73933,-0.57338566,1.3668395,0.6006557,1.2428443,1.0844817,0.36636358,0.48543411,-0.5954572,-0.59257406,-0.30289415,1.2783914,0.5800507,-0.23473695,-0.59497476,-0.66552746,2.2758756,-0.4732165,-0.... | 4 | 176.29102 | 0 | ... | 39 | 169.47894 | 15 | 151.277310 | 15 | 141.268980 | 15 | 145.39337 | 58 | 151.13809 |
5 rows × 41 columns
= f"{subclusters_dir}/clustered_watercolors.tsv"
clustered_watercolors_tsv_fname = pd.read_csv(
clustered_watercolors_df ="\t", index_col="idx"
clustered_watercolors_tsv_fname, delimiter
) clustered_watercolors_df.head()
abs_fname | rel_fname | label | pred_label | pred_idx | pred_probs | emb_csv | cluster | cluster_dist | metacluster | ... | handlabeled_metacluster_name | handlabeled_metacluster_id | handlabeled_metacluster_was_correct | preprocessed_abs_path | handlabeled_abs_path | emb_csv_cropped | watercolors_cluster_id | watercolors_cluster_dist | watercolors_cropped_cluster_id | watercolors_cropped_cluster_dist | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
idx | |||||||||||||||||||||
0 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb07p104.jpg | art/sb07p104.jpg | art | xtra | 4 | 0.177406,0.008799,0.008245,0.017177,0.788373 | -0.39105213,0.96309596,-0.73929733,0.4489988,0.8297614,-0.3937308,-0.7267234,-0.32461396,-0.7537334,-0.42715576,-0.62038505,-0.72562873,0.3037846,-0.6266761,-0.5213815,-0.31669965,-0.5467274,-0.6520286,-0.22544897,-0.6497359,-0.64108604,0.6374447,-0.5446661,-0.6779002,-0.14143991,-0.6690378,-0.44753593,0.66945183,-0.73986673,-0.45211998,-0.05996394,-0.21525535,0.82928157,-0.04412651,-0.600525,-0.04148197,-0.73825717,-0.57338566,-0.25227422,2.3566113,-0.61049384,1.0027854,-0.40134108,1.3733256,-0.75794554,-0.59257406,-0.4395525,-0.6001429,1.0358506,1.1911299,0.8162154,0.032713354,-0.6482407... | 5 | 238.33170 | 1 | ... | 1_watercolors | 1 | True | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/10_SIMPLE_CROP/1_watercolors/sb07p104.jpg | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/03_VISUAL_HAND_LABELED/1_watercolors/sb07p104.jpg | -0.6198182,0.8895926,-0.73929733,0.6418346,0.46164584,1.0085131,-0.7267234,-0.4896673,-0.7537334,-0.42715576,-0.62038505,-0.72562873,1.4399182,-0.6266761,0.474914,-0.57515705,-0.5467274,-0.6520286,1.2274435,-0.6497359,-0.27622125,-0.45870692,-0.5446661,-0.6779002,1.3343718,-0.6690378,-0.4518578,0.42277813,-0.73986673,-0.45211998,1.6291834,-0.67007643,-0.09817025,-0.00090405345,-0.600525,-0.6186755,-0.73933,-0.57338566,0.006386578,1.034553,-0.61049384,-0.58021957,-0.09483403,0.78779536,-0.73080033,0.10947651,0.3367887,-0.5382227,-0.26548737,0.5630663,2.15088,0.2266624,-0.6482407,0.049348265... | 7 | 215.02927 | 7 | 206.64117 |
1 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb31p017.jpg | art/sb31p017.jpg | art | xtra | 4 | 0.172119,0.008924,0.008226,0.016950,0.793781 | -0.05104202,-0.3935787,-0.73929733,0.86878717,-0.6254566,-0.65341413,-0.7267234,-0.4896673,-0.7537334,-0.14799604,-0.62038505,-0.72562873,-0.2654881,-0.6266761,-0.68991846,-0.57515705,-0.41532665,-0.6520286,-0.6898426,-0.34099144,-0.64108604,-0.55193967,-0.5446661,-0.6779002,-0.2674706,-0.53598946,-0.13334358,-0.5982413,-0.73986673,-0.45211998,-0.68509877,0.033780396,-0.52171326,0.054827005,-0.20721096,0.3301326,-0.73933,-0.57338566,0.34032136,-0.6179389,-0.20170414,0.16225064,-0.44437563,0.44581896,-0.069196045,0.20976627,-0.07846111,-0.6001429,0.38122594,-0.09738222,-0.59497476,-0.665527... | 11 | 191.66959 | 1 | ... | 1_watercolors | 1 | True | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/10_SIMPLE_CROP/1_watercolors/sb31p017.jpg | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/03_VISUAL_HAND_LABELED/1_watercolors/sb31p017.jpg | 1.491735,-0.5714155,-0.73929733,0.05867392,0.5154146,0.0936929,-0.7267234,-0.4896673,0.4246894,-0.42715576,-0.33477074,-0.72562873,1.2274611,-0.6266761,-0.68991846,-0.57515705,-0.5467274,1.1312869,-0.06054777,-0.028933167,-0.64108604,-0.55193967,-0.5446661,-0.6779002,-0.57759243,0.46393585,0.4817328,0.22738433,-0.73986673,-0.45211998,0.0057709217,-0.67007643,-0.52171326,0.68283725,0.060967267,0.7253895,-0.73933,-0.57338566,-0.65925777,-0.6179389,-0.32987997,0.86336035,-0.6189488,1.3613329,1.2250904,-0.59257406,-0.5857397,-0.6001429,-0.5687719,-0.14814761,0.5325973,-0.66552746,-0.6482407,0.... | 4 | 199.03098 | 4 | 195.97546 |
2 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb05p079.jpg | art/sb05p079.jpg | art | xtra | 4 | 0.172158,0.008873,0.008536,0.017017,0.793416 | 1.8089037,-0.5714155,-0.73929733,-0.10773122,-0.22753507,0.34884918,0.124596715,-0.4896673,-0.27447522,-0.42715576,0.61659455,-0.03226477,-0.662768,-0.6266761,-0.68991846,-0.57515705,-0.39897114,-0.6520286,-0.6898426,-0.6497359,0.16184372,-0.55193967,-0.5446661,-0.6779002,0.04647112,-0.6690378,-0.4518578,0.9576235,0.29423904,-0.45211998,-0.68509877,0.09260088,-0.3948297,-0.4592305,-0.600525,-0.6186755,-0.64046603,-0.57338566,0.08902073,0.09568572,-0.61049384,0.7515181,-0.15892029,-0.4098586,1.8483992,-0.59257406,-0.6157326,-0.56642026,-0.651804,-0.44185895,-0.19970179,0.19587982,1.3608505,... | 11 | 140.32997 | 1 | ... | 1_watercolors | 1 | NaN | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/10_SIMPLE_CROP/1_watercolors/sb05p079.jpg | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/03_VISUAL_HAND_LABELED/1_watercolors/sb05p079.jpg | -0.6013173,-0.5714155,-0.7368871,-0.6553513,-0.6254566,-0.65341413,0.071327925,-0.4896673,-0.7537334,-0.29406685,1.2854458,-0.72562873,1.4279991,-0.2084853,0.4439276,-0.57515705,-0.5467274,-0.2426523,0.6567551,-0.6497359,0.284827,-0.55193967,-0.5446661,-0.6779002,-0.57759243,-0.6690378,0.39760548,-0.5982413,-0.16403872,0.82081807,-0.68509877,-0.67007643,-0.16007048,-0.23898152,0.4340614,-0.6186755,-0.73933,-0.57338566,-0.65925777,-0.60700464,-0.22504222,1.2887287,0.17025876,-0.5827259,3.245521,-0.59257406,1.607188,-0.6001429,-0.1800242,-0.5315948,0.2059763,0.33526373,0.109642506,-0.0013180... | 4 | 142.76602 | 4 | 248.37231 |
3 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb26p082.jpg | art/sb26p082.jpg | art | xtra | 4 | 0.179525,0.008828,0.008282,0.017196,0.786169 | 1.8392665,0.3796271,-0.73929733,0.82189727,1.6830277,0.9302285,-0.5532687,-0.4896673,-0.30764756,-0.42715576,-0.44450876,-0.72562873,-0.662768,0.54702616,-0.68991846,-0.57515705,-0.31611928,-0.59368926,1.2819774,-0.6497359,-0.64108604,-0.55193967,0.84984857,-0.6779002,-0.06536412,-0.6690378,0.34403068,-0.16627067,0.3990196,-0.45211998,0.65170527,-0.67007643,0.6049255,-0.4367706,-0.600525,-0.0046679974,-0.73933,-0.109048486,-0.65925777,0.65358853,-0.61049384,0.70374626,-0.6189488,-0.6682474,-0.0177418,-0.59257406,1.1068444,-0.29651338,-0.651804,-0.5315948,1.8200746,-0.66552746,0.11623299,-0... | 7 | 176.11029 | 1 | ... | 1_watercolors | 1 | NaN | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/10_SIMPLE_CROP/1_watercolors/sb26p082.jpg | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/03_VISUAL_HAND_LABELED/1_watercolors/sb26p082.jpg | 0.8175719,0.48385304,-0.73929733,1.0291914,1.4682066,1.225123,-0.43518582,-0.4896673,-0.7537334,-0.42715576,0.72162604,-0.72562873,-0.662768,-0.6266761,-0.55470747,-0.57515705,-0.5467274,-0.6520286,2.099903,-0.6497359,-0.64108604,-0.55193967,1.3572993,-0.6779002,1.3149762,0.8512635,0.81857395,-0.5982413,0.056738913,-0.45211998,2.0946088,-0.67007643,-0.52171326,-0.4592305,-0.600525,1.1100725,-0.73933,-0.57338566,-0.24140868,0.9004108,-0.61049384,0.4742828,-0.6189488,-0.6682474,0.335356,0.40166396,0.7790335,-0.6001429,-0.651804,-0.4778452,0.7360641,-0.66552746,-0.6482407,-0.13845,-0.7311095,... | 1 | 157.93832 | 1 | 196.84943 |
4 | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/01_FLAT/art/sb69p101-color.jpg | art/sb69p101-color.jpg | art | xtra | 4 | 0.179525,0.008828,0.008282,0.017196,0.786169 | -0.23259398,-0.5714155,-0.73929733,-0.6553513,0.34417403,1.046661,-0.42288247,-0.4896673,0.39017296,-0.42715576,-0.62038505,-0.72562873,-0.662768,-0.6266761,0.93892807,-0.57515705,-0.5222921,-0.6520286,-0.6898426,-0.6497359,-0.6366938,-0.55193967,-0.5446661,-0.6779002,-0.46687827,-0.6690378,-0.4518578,-0.5982413,0.7252437,-0.45211998,1.8137504,-0.67007643,-0.52171326,-0.36457688,-0.600525,0.8178272,-0.73933,0.23574609,-0.65925777,-0.6179389,-0.61049384,-0.15158218,-0.41958112,-0.6682474,-0.75794554,0.4943592,0.8210626,-0.6001429,-0.651804,-0.080083996,0.48374963,-0.42743486,-0.6482407,-0.4... | 7 | 187.45346 | 1 | ... | 1_watercolors | 1 | NaN | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/10_SIMPLE_CROP/1_watercolors/sb69p101-color.jpg | /Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/03_VISUAL_HAND_LABELED/1_watercolors/sb69p101-color.jpg | 0.14908737,-0.5714155,-0.73929733,0.44245207,-0.6254566,1.4611686,-0.7267234,-0.4896673,0.87923527,-0.42715576,-0.62038505,-0.72562873,-0.662768,-0.6266761,0.4918049,-0.57515705,-0.5467274,-0.6520286,-0.6898426,-0.2860955,-0.64108604,-0.55193967,-0.5446661,-0.6779002,0.69009775,-0.6690378,-0.4518578,0.18292433,-0.004632473,-0.45211998,1.7543458,-0.67007643,-0.52171326,-0.41669255,-0.600525,1.4654884,0.5742926,-0.57338566,-0.65925777,-0.6179389,-0.52983093,0.26484245,-0.25630984,-0.6682474,0.19898295,0.95297796,0.38033813,-0.6001429,-0.651804,-0.5315948,1.3264011,0.31547034,-0.6482407,-0.47... | 1 | 167.27823 | 1 | 136.63800 |
5 rows × 25 columns
# %load_ext tensorboard
# import csv
# import numpy as np
# import tensorflow as tf
# from PIL import Image
= np.stack(
drawings_emb
[float(f) for f in s.split(",")])
np.array([for s in list(clustered_drawings_df.emb_csv)
]
).astype(np.float32)
= np.stack(
drawings_cropped_emb
[float(f) for f in s.split(",")])
np.array([for s in list(clustered_drawings_df.emb_csv_cropped)
]
).astype(np.float32)
drawings_emb.shape, drawings_cropped_emb.shape
((1923, 512), (1923, 512))
= np.stack(
watercolors_emb
[float(f) for f in s.split(",")])
np.array([for s in list(clustered_watercolors_df.emb_csv)
]
).astype(np.float32)
= np.stack(
watercolors_cropped_emb
[float(f) for f in s.split(",")])
np.array([for s in list(clustered_watercolors_df.emb_csv_cropped)
]
).astype(np.float32)
watercolors_emb.shape, watercolors_cropped_emb.shape
((404, 512), (404, 512))
def _shim(s):
return s.replace('/Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2', str(raster_epoch_dir))
import csv
from PIL import Image
= clustered_drawings_df
df = "drawings"
embeddings_name
= f"{subclusters_dir}/tflogs"
tf_logs if not os.path.isdir(tf_logs):
os.makedirs(tf_logs)= f"{tf_logs}/embeddings-{embeddings_name}/"
tf_embeddings if not os.path.isdir(tf_embeddings):
os.makedirs(tf_embeddings)= f"{tf_embeddings}/metadata.tsv"
metadata_fname
with open(metadata_fname, 'w') as outfile:
for idx in range(len(df)):
= df.iloc[idx]
row f"{row.indiv_fname}\n")
outfile.write(#!head {metadata_fname}
= f"{tf_embeddings}/feature_vecs.tsv"
vecs_fname with open(vecs_fname, 'w') as outfile:
= csv.writer(outfile, delimiter="\t")
csv_writer ',') for e in list(df.emb_csv)]) csv_writer.writerows([e.split(
= int(np.ceil(np.sqrt(len(df))))
one_square_size = 100 * one_square_size
master_width = 100 * one_square_size
master_height = Image.new(
spriteimage ='RGBA',
mode=(master_width, master_height),
size=(0,0,0,0) # fully transparent
color
)for idx in range(len(clustered_drawings_df)):
= clustered_drawings_df.iloc[idx]
row
# TODO: rework upstream TSV handling to use non-abs paths (relative to epoch dir?)
= _shim(row.preprocessed_abs_path)
img_path
= Image.open(img_path).resize((100, 100))
image = divmod(idx, one_square_size)
div, mod = 100 * div
h_loc = 100 * mod
w_loc
spriteimage.paste(image, (w_loc, h_loc))
# important: tensorboard looks for 'jpeg' not 'jpg' when setting mimetime
'RGB').save(f'{tf_embeddings}/sprite.jpeg', transparency=0) spriteimage.convert(
= clustered_watercolors_df
df = "watercolors"
embeddings_name
= f"{subclusters_dir}/tflogs"
tf_logs if not os.path.isdir(tf_logs):
os.makedirs(tf_logs)= f"{tf_logs}/embeddings-{embeddings_name}/"
tf_embeddings if not os.path.isdir(tf_embeddings):
os.makedirs(tf_embeddings)= f"{tf_embeddings}/metadata.tsv"
metadata_fname
with open(metadata_fname, 'w') as outfile:
for idx in range(len(df)):
= df.iloc[idx]
row f"{row.indiv_fname}\n")
outfile.write(#!head {metadata_fname}
= f"{tf_embeddings}/feature_vecs.tsv"
vecs_fname with open(vecs_fname, 'w') as outfile:
= csv.writer(outfile, delimiter="\t")
csv_writer ',') for e in list(df.emb_csv)]) csv_writer.writerows([e.split(
= int(np.ceil(np.sqrt(len(df))))
one_square_size = 100 * one_square_size
master_width = 100 * one_square_size
master_height = Image.new(
spriteimage ='RGBA',
mode=(master_width, master_height),
size=(0,0,0,0) # fully transparent
color
)for idx in range(len(df)):
= df.iloc[idx]
row
# TODO: rework upstream TSV handling to use non-abs paths (relative to epoch dir?)
= _shim(row.preprocessed_abs_path)
img_path
= Image.open(img_path).resize((100, 100))
image = divmod(idx, one_square_size)
div, mod = 100 * div
h_loc = 100 * mod
w_loc
spriteimage.paste(image, (w_loc, h_loc))# important: tensorboard looks for 'jpeg' not 'jpg' when setting mimetime
'RGB').save(f'{tf_embeddings}/sprite.jpeg', transparency=0) spriteimage.convert(
spriteimage
-0.6198182 -0.5714155 -0.6871516 -0.6553513 -0.6254566 -0.65341413 -0.7267234 -0.4896673 -0.7537334 -0.42715576 1.4904574 -0.72562873 -0.662768 -0.6266761 0.6913696 0.054546177 -0.5467274 -0.6520286 0.117179275 0.94330966 0.5815062 -0.55193967 -0.5446661 -0.6779002 -0.57759243 -0.4584825 -0.3818994 -0.5750927 -0.73986673 -0.45211998 -0.6141643 -0.67007643 -0.52171326 -0.4592305 1.4788612 -0.6186755 0.799198 -0.57338566 -0.17778617 0.10336053 0.093812525 0.17924881 -0.6189488 -0.6682474 2.1040225 -0.59257406 1.6553459 -0.6001429 0.5109105 0.19352531 -0.2517513 -0.66552746 -0.6482407 -0.4732165 -0.7311095 -0.6058329 -0.41851217 -0.6646769 0.19708657 -0.6859715 0.547243 -0.47478092 -0.8143768 0.6043384 -0.45561737 -0.5205148 -0.19637269 -0.67944384 -0.5505594 -0.7467994 -0.64460987 -0.46079588 -0.69849855 -0.41446227 -0.6081119 -0.6608871 0.23214674 1.7035191 -0.47101474 -0.5426106 -0.5526179 1.4402422 0.37750077 -0.4790987 0.46338224 -0.03557557 -0.577085 -0.6104121 0.31350982 0.63637584 -0.14618653 -0.61428136 1.5493102 -0.63265276 1.1587265 -0.48707122 -0.6967229 -0.59332824 1.7449057 -0.46021277 -0.63993174 -0.76553875 -0.60530424 -0.29537043 -0.4157559 -0.49291843 -0.6262977 -0.6128263 -0.5139186 -0.62823576 -0.59007895 -0.6965061 -0.5804847 -0.5246716 -0.48676312 -0.26156187 0.95585954 -0.6238418 0.9746174 -0.16204783 2.2321355 0.061881006 -0.63529575 -0.537477 -0.36832452 -0.004981935 -0.48087424 -0.43983847 -0.50105065 -0.682836 -0.66491187 -0.6797472 -0.0997439 -0.021999538 -0.71257764 1.9016916 -0.60108 -0.63299096 0.28140062 -0.7171157 -0.6375682 -0.6348774 3.2009544 -0.73214924 -0.62897754 -0.46266684 -0.37859043 -0.2960567 0.22409528 0.5868449 -0.51874804 -0.31387416 -0.19374281 0.00200814 0.7507072 1.0907284 -0.5358345 -0.07787788 -0.29217994 0.77522665 -0.55414665 -0.4696428 -0.6053274 -0.49728537 -0.55488074 -0.48824254 -0.65081346 -0.60318696 0.9660937 -0.56329983 -0.5211032 -0.639345 -0.5437213 -0.63751215 -0.34079963 -0.53909826 -0.65106076 0.20559418 -0.5073842 -0.6918073 -0.62693447 -0.49275136 -0.65002286 0.95751303 -0.3008598 -0.55680686 1.0792496 0.774848 -0.48588264 -0.71772426 -0.5829121 -0.4725283 1.023493 2.0256374 0.7612439 -0.4826959 -0.21178856 -0.5074541 2.2746863 0.47541696 1.0433946 -0.44740248 0.97176546 -0.23189563 0.23473871 -0.51704395 -0.6029111 0.027723491 -0.4995486 -0.14938274 0.1428783 -0.67159975 -0.67170393 -0.64598054 -0.5561494 -0.56587017 -0.47049776 0.22861469 -0.53188723 0.5946686 -0.61235195 -0.799528 -0.41546223 0.38230646 -0.09492311 0.33810467 1.7077615 -0.41099703 -0.6477621 -0.5815004 -0.119737774 0.3397501 -0.62445724 1.7291558 -0.59607416 1.682477 -0.666945 -0.051748693 -0.22180039 -0.7036786 -0.51746833 -0.4629042 -0.5136348 -0.44215468 -0.6816496 -0.7029415 0.23656172 -0.51101106 -0.49007544 0.1973244 -0.27828568 -0.52145916 -0.33100298 -0.5925758 -0.5095265 -0.31034473 -0.6532269 -0.7680724 1.2137315 -0.61329556 -0.6628743 0.98060465 -0.683384 0.36679065 0.2210542 0.00029248 1.2421384 1.7115324 -0.67644596 -0.20039517 0.15179002 1.2533226 0.8483739 -0.47555566 -0.588568 -0.4634904 -0.2342771 -0.17135361 0.40001863 -0.11752543 -0.517914 0.18666852 0.6040581 -0.7012117 0.3401546 -0.6307094 -0.47852555 -0.5130526 -0.50031877 0.6472873 -0.5062285 -0.6709848 1.5579097 -0.481373 -0.65100396 0.64553756 -0.71602243 0.07682127 -0.61497146 0.20312417 0.004381001 0.82400197 1.9556577 -0.6605026 -0.34786063 -0.5447662 -0.61742276 -0.6534633 -0.46339914 -0.5475428 -0.47044614 -0.6482402 -0.4996574 -0.51402634 0.36537015 -0.6583128 -0.50534487 -0.6725912 -0.22902215 -0.5561926 -0.45594007 -0.6112856 -0.15991735 -0.6999633 1.5441899 -0.6699586 0.89477324 -0.4635805 -0.58375645 -0.43037957 -0.11047655 -0.6483807 1.2622786 -0.6759538 -0.70283246 -0.5861831 -0.47019035 -0.59126043 0.18478405 -0.33273932 -0.5547614 0.3397526 1.1154402 -0.22537094 1.2848659 -0.5364493 -0.71200985 -0.5311079 -0.61185944 -0.64053524 -0.5029819 0.067080855 0.11652273 -0.5853718 -0.66932786 -0.15818292 -0.62367845 0.7262716 -0.4787713 -0.4564949 0.2395302 0.6643908 -0.25392973 -0.6761629 -0.42921948 -0.27119038 0.56590176 -0.55952317 0.36057645 1.6846812 0.057736367 -0.73007077 0.40202093 -0.5312875 -0.17738879 -0.4736769 -0.61417806 -0.4619323 -0.5301372 -0.48249543 -0.7779453 -0.19391319 -0.46213186 0.5157924 1.1046441 0.63756037 -0.61582494 -0.69205695 -0.13734245 -0.661769 -0.6900329 -0.4719818 -0.6335669 1.8876587 0.328789 -0.10699955 3.2874646 0.34532726 -0.122377336 2.7782545 0.8461142 1.3820603 -0.518363 -0.5443141 -0.6437589 -0.18877521 -0.57434005 -0.5696869 0.99117476 -0.61999637 0.26415282 -0.5783037 0.5301837 0.74880236 -0.564467 -0.624485 0.29636407 0.7744219 -0.67781055 -0.25113168 -0.43388456 0.9224855 1.8482845 -0.6042349 1.407727 1.9888644 -0.5181872 -0.56346613 0.0011875033 -0.23027515 -0.41507006 0.20999777 -0.14713013 0.890923 -0.5720823 -0.12613213 -0.68253326 -0.22734392 -0.67740345 -0.4403832 -0.5921915 -0.6676015 -0.68035614 0.48290104 -0.1582441 0.98563135 0.88531333 -0.56316394 0.12502867 -0.59465045 -0.47783846 -0.3397814 0.18029618 -0.5940082 -0.6207036 1.3442724 1.3843284 -0.64950424 -0.5894991 0.23044568 -0.6176074 -0.5994974 0.81368804 -0.16989186 -0.0060750544 -0.6400218 1.4727979 -0.22294387 2.3308163 -0.48364016 -0.4952819 -0.6471045 -0.499587 -0.5337828 -0.55979806 -0.46219397 -0.6132164 0.41023475 0.03102547 -0.6131269 -0.06623703 -0.47071788 -0.51132727 -0.22521377 -0.63688064 -0.21970803 0.9474908 -0.5632065 -0.6459049 -0.71138895 -0.39364403 -0.49940833 -0.4929026 -0.0048267245 -0.4832442 -0.5548996 -0.46071145 -0.32768083 -0.6024839 -0.6660967 0.068418026 -0.5019231 -0.6273019 -0.43346506 -0.61844975 -0.5771547 0.11831212 -0.066627264 -0.5419061 0.09847462 -0.49206764 -0.39251342
1.1073987 0.3512016 -0.73929733 -0.6553513 1.7477593 -0.65341413 0.32179314 -0.4896673 -0.1797334 -0.42715576 1.3163843 -0.72562873 -0.61387855 -0.6266761 -0.35361218 0.37611246 -0.08771938 -0.5262803 0.9261699 -0.6497359 -0.64108604 -0.55193967 -0.5446661 -0.6779002 -0.32559583 -0.6690378 -0.4518578 0.51828945 -0.4238917 -0.45211998 -0.16527033 -0.67007643 1.0136865 -0.4592305 -0.600525 -0.060860336 -0.19446748 -0.24127388 2.2282472 1.8003348 -0.61049384 0.39795423 0.2626753 -0.6682474 -0.75794554 -0.59257406 0.80257696 -0.6001429 -0.651804 -0.028328001 0.53641737 -0.6501347 -0.6482407 0.3295404 -0.7311095 0.7769913 -0.47955433 0.029548049 -0.69804686 -0.6859715 -0.7994243 -0.37796497 0.2770447 -0.5895213 -0.45400283 -0.3217132 -0.69643825 -0.50339925 -0.28047013 -0.7467994 -0.64460987 -0.46079588 0.9519163 -0.692441 -0.6081119 -0.6608871 -0.68580395 0.38670623 -0.39434192 -0.2689916 -0.5526179 3.0988364 0.6767974 0.5479597 -0.64532113 -0.79415584 -0.577085 -0.6104121 -0.21005714 0.9130197 0.5350442 0.02642548 -0.7075963 -0.63265276 1.0843167 -0.14746365 0.37673205 -0.73169684 2.9166942 -0.68441904 -0.63993174 -0.76553875 1.35689 -0.2936016 1.1953154 -0.49291843 2.4941373 0.5234068 -0.5519926 -0.62823576 -0.27636325 -0.6965061 -0.5804847 -0.3484809 -0.23164913 0.3351344 1.9399989 -0.6238418 2.4131138 0.56315875 -0.6619385 0.7226322 3.0301828 -0.537477 -0.5148479 1.2457952 -0.035156786 0.0038073957 -0.50105065 -0.22542143 0.79507375 -0.6797472 0.4369036 -0.6556923 -0.71257764 0.842523 1.168153 -0.56751305 1.2122676 -0.7171157 -0.6375682 -0.6348774 -0.5785726 -0.73214924 0.50270844 -0.46266684 1.4489454 -0.38700646 -0.6088965 1.3957318 -0.51874804 2.1159246 -0.6530593 -0.024851084 -0.59888333 0.18911964 -0.5358345 -0.6222166 0.19376683 0.014755368 -0.55414665 -0.4696428 -0.6053274 0.22089148 -0.55488074 0.24218276 -0.65081346 -0.60318696 0.659924 -0.56329983 -0.08825785 -0.639345 -0.027083099 -0.63751215 1.481066 -0.53909826 0.40229827 -0.68776333 0.7223346 -0.6918073 -0.62693447 0.049732804 -0.65002286 -0.21168253 0.009727299 -0.55680686 -0.6456044 -0.25574428 -0.48588264 -0.71772426 -0.7531246 -0.4725283 0.85692835 -0.30708647 2.8895497 -0.4826959 0.65924776 -0.5074541 -0.39449766 -0.06298071 1.1019258 -0.44740248 0.26116616 -0.41378984 -0.64094496 0.34735852 0.88798976 -0.6500554 -0.4995486 1.0063698 -0.7774646 -0.67159975 -0.67170393 -0.47006562 -0.5561494 -0.094100624 -0.47049776 -0.7183699 -0.09890795 -0.6599151 -0.61235195 -0.799528 -0.5958991 -0.5961882 -0.53419805 -0.17983526 -0.078457534 1.0881107 -0.6477621 -0.5815004 1.790916 -0.62075394 -0.62445724 1.0470514 1.1369569 2.796564 -0.67020726 -0.58545256 2.2493072 0.528484 0.5199286 -0.5639156 -0.5136348 -0.44215468 0.22048092 -0.7029415 -0.6352208 -0.19745034 0.6001003 -0.64529026 -0.631587 -0.52145916 -0.68476003 -0.5925758 0.2412672 -0.29952493 0.033296943 -0.7680724 1.2963097 0.23716837 -0.6628743 0.0137838125 -0.683384 3.0933921 -0.27605537 -0.24247721 -0.24648625 -0.6831762 -0.67644596 0.09041631 -0.0870235 0.8275259 -0.63977027 -0.47555566 -0.588568 -0.44164154 -0.5791197 -0.5512841 1.861238 -0.060551345 -0.056833237 1.0406823 -0.62749094 -0.5422507 0.41750175 0.25172496 -0.47852555 -0.36199635 -0.40971822 0.1049726 -0.5062285 -0.6709848 -0.69386715 -0.481373 -0.65100396 0.28651512 -0.71602243 -0.6275605 -0.3905087 -0.6981776 0.3271085 1.391211 -0.8038508 0.70832914 -0.73018485 -0.5447662 -0.61742276 -0.6534633 0.5830945 -0.004030347 -0.47044614 -0.6482402 0.3220634 1.077738 -0.62476414 -0.6583128 -0.50534487 0.18389475 0.9850725 -0.5561926 0.07914758 1.916964 -0.62447065 0.62855464 0.95698535 1.1300554 -0.61644304 -0.4635805 1.5010269 -0.43037957 -0.6291859 -0.6483807 0.186557 0.036331773 0.920956 -0.5861831 -0.47019035 -0.59126043 0.46994698 -0.6811046 -0.5547614 1.1410706 -0.42045763 1.7019651 -0.5869171 -0.5364493 -0.71200985 -0.5311079 3.415893 2.6726599 -0.44865486 2.536608 -0.032728553 -0.5780154 0.44250727 -0.16620338 -0.62367845 0.85426545 -0.4787713 0.17900649 2.1816025 0.32237065 0.17274886 -0.5489194 -0.6687816 -0.62331444 0.527226 -0.55952317 -0.6330787 -0.6756778 1.0632998 -0.73007077 0.8655244 -0.5563068 -0.7210105 -0.4736769 0.07629979 -0.4619323 -0.5301372 -0.5188687 -0.7779453 -0.5511636 0.06920338 0.644273 1.2033467 -0.7352437 -0.61582494 -0.69205695 0.84463143 0.6501573 -0.6900329 -0.06875408 -0.6335669 -0.7927979 -0.65140545 -0.54773664 0.25930458 1.2992175 0.5042671 1.7256842 0.7275955 -0.6175546 -0.4735519 -0.31053644 -0.6437589 -0.6362093 -0.4980286 -0.05924201 1.0999625 -0.61999637 0.50024706 -0.5783037 -0.63265276 0.9367605 1.0552256 -0.624485 1.5743426 -0.6635577 -0.3704734 1.4905856 1.5606068 0.51483727 -0.49503195 -0.6219417 1.236131 -0.7140479 -0.19985345 1.6453497 -0.5921287 -0.25122356 -0.5988868 -0.66452193 -0.70562786 1.1116987 -0.4090636 0.71391904 -0.68253326 -0.55096567 0.29692745 0.021855652 0.80976707 -0.6676015 -0.68035614 0.7990009 0.3743217 1.7308805 -0.39844143 -0.20389384 -0.7522869 -0.59465045 -0.47783846 -0.189868 -0.67154586 -0.34900972 -0.6207036 0.6796166 -0.6108009 -0.64950424 -0.5894991 -0.57587796 -0.6176074 -0.5994974 -0.6213416 -0.6484237 0.42586687 -0.6400218 0.07455218 -0.7007099 -0.28212306 -0.48364016 -0.4952819 -0.6471045 -0.009717941 0.009052992 -0.55979806 -0.46219397 -0.6132164 -0.5378847 1.5603629 1.9842507 -0.6269447 1.0171154 -0.51132727 -0.63025486 -0.63688064 0.3612367 -0.59816146 -0.5632065 -0.6459049 -0.71138895 -0.5816399 -0.49940833 -0.4929026 -0.7398169 -0.4832442 -0.5548996 0.30212536 0.5373781 -0.6024839 1.0492686 0.3141206 -0.5019231 0.655814 -0.10403547 -0.61844975 0.35397965 -0.028526545 0.6035874 0.1292668 -0.65107447 -0.49206764 0.32716987
1.3776337 -0.5714155 -0.2587232 -0.6553513 1.3532461 -0.65341413 -0.7267234 -0.4896673 -0.7537334 -0.25077122 0.050992966 -0.72562873 0.1406585 -0.6266761 1.0653365 0.96198404 -0.5467274 0.30261123 0.6327609 -0.6497359 -0.64108604 -0.28434965 -0.35651857 -0.6779002 -0.28245115 -0.6690378 -0.4518578 0.030088186 -0.73986673 -0.18931103 -0.041653574 -0.67007643 -0.52171326 -0.29881266 -0.600525 -0.23231092 -0.73933 -0.57338566 -0.65925777 1.8833572 -0.61049384 0.44560486 0.14075392 -0.6682474 -0.75794554 -0.59257406 -0.07511848 -0.6001429 -0.651804 -0.5315948 0.023931146 0.723624 -0.6482407 -0.13593137 -0.7311095 0.59529644 -0.47955433 -0.6646769 -0.69804686 -0.49380377 -0.47234848 -0.47478092 0.55306476 0.79116476 -0.5287406 -0.06111142 -0.69643825 -0.67944384 -0.59154034 -0.7467994 -0.64460987 -0.46079588 -0.69849855 -0.692441 -0.6081119 -0.6608871 0.71966714 -0.8218076 -0.47101474 -0.5426106 -0.5526179 1.6324786 -0.51120186 -0.4790987 -0.64532113 0.028811932 -0.577085 -0.6104121 0.5281577 -0.039097607 -0.71985745 -0.61428136 1.0950723 -0.63265276 1.7796504 -0.50889117 -0.6967229 -0.73169684 0.13936383 -0.68441904 -0.63993174 -0.76553875 -0.0690189 -0.55279887 1.3697383 -0.49291843 0.28409517 -0.6128263 -0.5519926 -0.013880551 0.31387687 -0.6965061 0.19958514 -0.46852648 1.6816958 0.008445114 2.8924024 -0.6238418 1.8272073 0.17341909 1.2846789 -0.58417743 0.7973143 -0.537477 -0.5148479 0.34587818 -0.48087424 0.0909127 -0.4703402 -0.682836 0.4384197 -0.6797472 1.0529947 -0.6556923 -0.71257764 -0.02925086 -0.60108 -0.63299096 0.49842006 -0.7171157 -0.6375682 -0.6348774 0.12574118 -0.73214924 0.3981874 -0.46266684 0.99739885 -0.5647883 -0.6088965 1.018522 -0.51874804 3.6447055 0.088588715 -0.16168177 0.4316172 -0.70976746 -0.5358345 -0.6222166 -0.58524024 -0.56878453 -0.26676238 -0.4696428 -0.3541621 -0.21271363 -0.18079734 -0.48824254 -0.65081346 -0.60318696 -0.11717546 -0.56329983 0.5343043 -0.639345 -0.40191436 -0.63751215 -0.60767806 -0.53909826 -0.0073986053 0.44983995 0.8738009 -0.6918073 -0.62693447 -0.45662212 -0.65002286 -0.6848493 1.9475645 -0.55680686 -0.6456044 -0.70373756 0.17998844 -0.107574165 -0.7531246 -0.4725283 -0.6788409 0.4517892 1.121084 -0.4826959 0.75132203 -0.5074541 0.86952305 2.1392052 1.6924658 -0.44740248 -0.5509034 -0.493435 1.1955667 -0.51704395 -0.6029111 -0.6500554 -0.4995486 -0.52000505 -0.025108695 -0.058374166 -0.43562713 -0.64598054 -0.5561494 -0.56587017 0.5579486 0.36710173 -0.53188723 -0.6599151 -0.43994385 -0.799528 -0.5958991 0.87169635 -0.06929764 -0.47800088 0.97562116 -0.23208794 -0.6477621 -0.5815004 2.277323 -0.62075394 -0.19751352 -0.5734308 2.0764236 2.1207898 -0.67020726 -0.58545256 -0.5507498 -0.39684898 0.14172232 -0.12031591 -0.5136348 -0.44215468 -0.6816496 0.9461835 0.0978117 -0.51101106 0.65664434 -0.2258716 -0.631587 -0.52145916 -0.10124171 -0.5925758 -0.5095265 -0.5200247 -0.6532269 -0.7680724 -0.5927339 -0.61329556 -0.6628743 -0.346667 -0.683384 0.8354152 -0.21816382 1.9323242 -0.31244957 -0.6831762 -0.67644596 0.042757213 -0.5247881 0.6151841 -0.63977027 -0.47555566 -0.588568 -0.4634904 -0.5791197 -0.5512841 1.633877 -0.0636791 -0.517914 0.34298027 -0.62749094 -0.7012117 0.99376136 -0.6307094 -0.47852555 -0.5130526 -0.4842003 -0.6389534 -0.5062285 -0.41510683 1.544627 -0.481373 -0.65100396 -0.664848 0.87122625 -0.6275605 0.12040424 -0.6981776 -0.0033897161 -0.5311089 -0.7548808 -0.6605026 -0.73018485 0.68097436 -0.61742276 -0.6534633 0.09401286 -0.5475428 -0.47044614 -0.6482402 -0.031416506 -0.51402634 -0.4438041 0.6428673 -0.50534487 -0.6725912 -0.5148951 -0.5561926 -0.45594007 -0.6112856 -0.62447065 -0.6999633 0.5318935 -0.6699586 0.8117211 -0.15828401 0.13347578 -0.43037957 -0.6291859 0.63440746 0.9724966 1.8258135 0.77202344 -0.27735382 -0.47019035 -0.59126043 0.76534235 -0.6811046 -0.5547614 1.9455194 0.36043268 0.8312363 -0.6157184 -0.5364493 0.056869686 -0.5311079 -0.61185944 0.5615393 -0.7814901 1.793325 -0.70669377 -0.5853718 -0.66932786 -0.5585858 -0.62367845 -0.10432693 -0.4787713 -0.4564949 0.05945313 -0.20767814 -0.35012648 -0.122913 -0.6687816 -0.6420673 1.2881483 1.313288 -0.6330787 -0.6756778 0.2662569 -0.73007077 0.9952432 -0.5563068 -0.7210105 -0.4736769 -0.61417806 -0.4619323 -0.5301372 -0.5188687 -0.32171673 -0.5511636 -0.46213186 -0.36939648 0.50612587 -0.40164778 -0.61582494 0.581302 3.238738 -0.661769 -0.6900329 -0.4719818 -0.6335669 -0.39032048 -0.65140545 -0.19066495 0.29106563 1.6273549 -0.6868099 0.459081 -0.61867577 -0.6175546 0.27739727 0.015430629 -0.6437589 -0.6362093 -0.050485313 -0.06652564 0.57567877 -0.61999637 0.79358846 -0.5783037 -0.63265276 -0.30958584 0.022988081 -0.624485 0.19309413 1.8246684 0.1240108 0.8768455 1.0637047 2.2979016 -0.36150196 0.15229255 0.30510563 -0.24800098 -0.5181872 -0.084780484 -0.6898156 -0.49261582 -0.5988868 -0.66452193 -0.70562786 0.122772336 -0.3561841 -0.4018598 -0.68253326 -0.55096567 -0.05666709 -0.4313164 0.58647746 -0.289331 -0.68035614 0.75362533 -0.64309394 1.5269258 1.9408898 -0.56316394 -0.7522869 0.29567719 -0.47783846 -0.35840648 -0.67154586 -0.5940082 0.67609406 1.6258705 -0.683239 0.33839643 -0.5894991 -0.15334094 0.7860455 -0.5994974 -0.5924538 -0.6484237 -0.49718592 -0.6400218 0.68910927 -0.7007099 2.23881 -0.48364016 -0.4952819 0.06308985 -0.499587 -0.5337828 -0.55979806 -0.4478871 -0.6132164 -0.5378847 0.03778881 0.43626726 -0.6269447 2.814978 -0.51132727 -0.26461604 -0.63688064 1.5497985 -0.59816146 0.49051863 -0.6459049 -0.54030514 -0.5816399 -0.49940833 -0.00710088 -0.7398169 -0.4832442 1.0332335 -0.4584871 -0.40195614 -0.6024839 0.46805418 -0.7452056 -0.5019231 -0.6273019 -0.53396827 -0.61844975 -0.5771547 -0.31358904 2.3046937 0.35861295 -0.65107447 -0.4748875 0.19909522
tf_embeddings
'/Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/04_SUBCLUSTERS/tflogs/embeddings/'
<tf.Variable 'Variable:0' shape=(1923, 512) dtype=float32, numpy=
array([[-0.6198182 , -0.5714155 , -0.6871516 , ..., 0.09847462,
-0.49206764, -0.39251342],
[ 1.1073987 , 0.3512016 , -0.73929733, ..., -0.65107447,
-0.49206764, 0.32716987],
[ 1.3776337 , -0.5714155 , -0.2587232 , ..., -0.65107447,
-0.4748875 , 0.19909522],
...,
[ 1.637738 , -0.5714155 , -0.73929733, ..., -0.65107447,
-0.13707963, 0.20361403],
[ 4.6632442 , 0.29762375, -0.73929733, ..., 0.01897907,
-0.49206764, -0.39251342],
[ 0.71924925, 0.20198071, 1.2284024 , ..., -0.22790754,
0.7221783 , -0.08996937]], dtype=float32)>
weights
# weights = tf.Variable(model.layers[0].get_weights()[0][1:])
<tf.Variable 'Variable:0' shape=(1923, 512) dtype=float32, numpy=
array([[-0.6198182 , -0.5714155 , -0.6871516 , ..., 0.09847462,
-0.49206764, -0.39251342],
[ 1.1073987 , 0.3512016 , -0.73929733, ..., -0.65107447,
-0.49206764, 0.32716987],
[ 1.3776337 , -0.5714155 , -0.2587232 , ..., -0.65107447,
-0.4748875 , 0.19909522],
...,
[ 1.637738 , -0.5714155 , -0.73929733, ..., -0.65107447,
-0.13707963, 0.20361403],
[ 4.6632442 , 0.29762375, -0.73929733, ..., 0.01897907,
-0.49206764, -0.39251342],
[ 0.71924925, 0.20198071, 1.2284024 , ..., -0.22790754,
0.7221783 , -0.08996937]], dtype=float32)>
# Create a checkpoint from embedding, the filename and key are the
# name of the tensor.
= tf.train.Checkpoint(embedding=weights)
checkpoint "embedding.ckpt"))
checkpoint.save(os.path.join(tf_embeddings,
"embedding.ckpt")) checkpoint.save(os.path.join(tf_logs,
'/Users/al/Dropbox/2-Areas/2-Sketchbooks/datasets/full-v2/04_SUBCLUSTERS/tflogs/embedding.ckpt-2'
# Set up config.
= projector.ProjectorConfig()
config = config.embeddings.add()
embedding # The name of the tensor will be suffixed by `/.ATTRIBUTES/VARIABLE_VALUE`.
= "embedding/Variable:0"
embedding.tensor_name = 'metadata.tsv'
embedding.metadata_path projector.visualize_embeddings(tf_embeddings, config)
Launching TensorBoard...